LOCARNET Session 6 Land Use Innovative Modelling and Monitoring Research for Land Use Scenarios of Eco-Cities Oct. 8th, 2015

Prof. Tsuyoshi Fujita,

Director of Social Environmental Systems Research Center, NIES, Japan

with Dr. Minoru Fujii, NIES

(1) Integrative modelling research for low carbon society
 (2) Multi scale technology and policy simulation system
 (3) Interactive monitoring and regional evaluation system research

PREPARED by Dr. Shuichi Ashina, Dr. Kei Gomi, Kei, Dr. Takuya Togawa

New Challenges for Modelling and Monitoring Research

Research challenge to compile innovative modelling and monitoring approach

Environmental Monitoring Information System

New Challenges for Modelling and Monitoring Research

Research challenge to compile innovative modelling and monitoring approach

Environmental Monitoring Information System

2. Future technology and policy system analysis for eco-cities

Integrative Model Application toward Low Carbon Cities and Regions

Macro-scope Simulation for the Future Scenario of Population and Prodiction

Macro Scope Technology Assessment for Local Government

Assessment for Suitable Technology Assessment for the Low Carbon Future (80% Reduction in 2050 from 1990) in Shinchi Town of Fukushima

Development of Regional Integrated Models (Regional AIM) and Spatial Planning Model to design sustainable regions and cities

Future Scenario Simulation for Fukushima Shinchi Township ; BAU Recovery Scenario

Future Scenario Simulation for Fukushima Shinchi Township ; Green Growth Scenario

Estimation of Alternative Future Recovery Scenarios

Environmental Measures Analysis in Tokyo Metropolitan Region

Primary application case in Tokyo region, Japan

An application case in Tokyo region (macro to spatial scale). Regional condition, resource and energy circulation, and future industrial and urban symbiosis are analyzed.

Output of Local Energy Model Projected energy demand by sector and by service

2050, total energy demand

Total energy demand in Tokyo Metropolitan Region (PJ/year)

	2014		2050	
	Residential	Commercial	Residential	Commercial
Power	58.4	238.7	47.9	248.2
Cooling	95.2	698.3	78.2	726.2
Heating	90.2	311.9	74.0	324.4
Hot-water	255.2	10.1	209.5	10.5
Sub-total	499.0	1258.9	409.6	1309.3
Total	1758.0		171	8.9

Kei GOMI, Shuichi ASHINA, Tsuyoshi FUJITA, Toshihiko MASUI (2015): Development Of A Methodology For Regional Future Scenarios Considering Interaction Of Industry And Population And Application In So-ma Region In Fukushima Prefecture Journal of JSCE (Accepted) (In Japanese)

Considering time-frame in the technology assessment models

With future targets of demography, economy, and environment in the region, the most suitable technology is chosen in short, mid, and long term. Structure of land use and related industries are describe as well.

Research Project of Local CO2 Future Tech-A; 2014-

Integrative Assessment

to identify technology effects with policy system implementation focusing CO2 and other socio-environmental effects

- Inter-temporal Assessment

to identify the suitability of technology and policy packages based on the future targets and present situations

- Inter-Scale Assessment

to identify the suitability of technology and policy packages based on the future targets and present situations

Interactive Assessment

to apply methodology and tools into local planning and decision making process for Fukushima Restoration plans after radio-active pollution removal

Smart Eco-Monitoring System for Low carbon Society 2014-

Smart ICT network will promote and complement the synergetic network functions among stakeholders

Monitoring sites of Bogor City in 2014-2015

Shopping mall is targeted in 2015FY 50 monitoring points in Bogor city

Sector	Number of facilities	Number of point
Government building	3	30
Residential house	3	12
Commercial facilities	2	8

Action framework of urban monitoring system in Asia

- •Advanced internet security technologies effectively manage and protect the data
- Excellent recovery data collection capability
- Relationship analysis between human behavior and energy use

Analysis example in Residential Unit

Potential of energy-saving is 15% in Residential Unit Air conditioner has 50% of Electricity Consumption

- 1. Raising the set temperature 2 degrees (4%)
- 2. Maintenance of equipment (3%)
- 3. Replacing to latest air conditioner (8%)

Potential of CO2 reduction in Residential Unit: $199[kwh/year] \times 0.814[kg/kwh] \Rightarrow 0.162[tCO_2/year]$ (Indonesia <Java> FY2012)

Potential of CO2 reduction in Bogor city

Potential of residential and small facility in Bogor city is about 19,342 [tCO₂/year] based on hypothesis

(1) Distribution of distribution transformer in Bogor

(2) Potential of CO₂ reduction in Bogor

※ ③ = ① × ②

Category	 Monitoring Result [tCO2 / year / facility] [2000-3000KVA] 	② Possibility Range [number of contracts] [2000-5000KVA]	③ Reduction potential [tCO2 / year] 【2000-5000KVA】
Residential	0.162	49527	8040
Small Office	2.564	2949	7561
Small Commercial	4.365	857	3740
Total		53333	19342

Potential of residential, small office and small commercial is 19,000 [tCO2 / year]

Future vision of Eco-city monitoring in Indonesia

				Dogoi	Danuung
114	164	189	214	214 125	214 125
FY2014	FY2015	FY2016	FY2017	FY2018	FY2019
Residential Office (Small) Commercial (Small)	Residential Government Shopping Mall (Large	Hotel (Large) School (Small)) Factory (Small)	Hospital (Large) Factory (Large)	Factory (Large)	

City	Category	tCO ₂ /year /facility
	Residential	0.162
Bogor	Office (Small)	2.564
	Office (Large)	FY2017
	Commercial (Small)	4.365
	Office (Large)	FY2016

City	Category	tCO ₂ /year /facility
Bandung	Factory (Small)	FY2016
	Factory (Large)	FY2018

Degen Dendung

Interactive Eco-policy Planning System in Asia

Innovative Modelling and Monitoring Research Project

List or related publications

- Yong Geng, Fujita Tsuyoshi, Xudong Chen; Evaluation of Innovative Municipal Solid Waste Management through Urban Symbiosis: A Case Study of Kawasaki, Environmental Sci and Tech., 2009 (revised)
- Rene Van Berkel, <u>Tsuyoshi Fujita</u>, Shizuka Hashimoto, Minoru Fujii; Quantitative Assessment of Urban and Industrial Symbiosis in Kawasaki, Japan, Environmental Science & Technology, Vol.43, No.5, 2009, pp.1271-1281,0129.2009
- Rene van Berkel, <u>Tsuyoshi Fujita</u>, Shizuka Hashimoto, Yong Geng; Industrial and Urban Symbiosis in Japan : Analysis of the Eco-Town Program 1997-2006; Journal of Environmental Management, vol.90,pp.1544-1556,2009
- Shizuka Hashimoto, <u>Tsuyoshi Fujita</u>, Yong Geng, Emiri Nagasawa; Achieving CO2 Emission Reduction through Industrial Symbiosis: A Case of Kawasaki, Journal of Environmental Management, 2008 (submitted)
- Yong Geng, Qinghua Zhu, Brent Doberstein, <u>Tsuyoshi Fujita</u>; Implementing China's Circular Economy Concept at the Regional Level: a review of progress in Dalian, China, Journal of Waste Management, vol.29,pp996-1002,2009
- Yong Geng, Rene Van Berkel, <u>Tsuyoshi Fujita</u>; Regional Initiatives on Promoting Cleaner Production in China: A Case of Liaoning, Journal of Cleaner Production, 2008 (submitted)
- Zhu Qinghua, Yong Geng, <u>Tsuyoshi Fujita</u>, Shizuka Hashimoto; Green supply chain management in leading manufacturers: Case studies in Japanese large companies, International Journal of Sustainable Development and World Ecology, 2008 (submitted)
- Yong Geng, Pang Zhang, Raymond P. Cote, Tsuyoshi Fujita; Assessment of the National Eco-industrial Park Standards for Promoting Industrial Symbiosis in China, J. of Industrial Ecology, Vol.13, No.1, pp.15-26, 2008
- Looi-Fang Wong, <u>Tsuyoshi Fujita</u>, Kaiquin Xu; Evaluation of regional bio-energy recovery by local methane fermentation thermal recycling systems, Journal of Waste Management,vol.28, pp.2259-2270, 2008

Thank you for your Attention